
 
 

Image Processing and Analysis Library

PROCESSING POWER
The PXIPL Library empowers C/C++ and Windows program-
mers to process and analyze images in conjunction with:

• The PIXCI® imaging boards and XCLIB Library,
• The EPIX® SILICON VIDEO® cameras, their PIXCI® imaging

board, and XCLIB Library,
• The 4MEG VIDEOTM imaging boards and 4MOBJ Library, or
• The SV-MUXTM imaging boards and SVOBJ Library.

The PXIPL Library is compatible with all of the hardware and
software environments supported by the XCLIB, 4MOBJ, and
SVOBJ libraries. PXIPL routines operate directly upon imag-
ing board buffers, upon images in PC memory, or upon
images stored on disk.

PXIPL provides a wide selection of imaging routines. The
major categories include: processing, enhancements,
graphic lines and shapes, text overlay, printing, morphology,
filters and edge detectors, transforms, convolutions,
sequence integration and averaging, image printing, image
copy and resizing, single image and image pair normaliza-
tions, blob analysis, histograms and moments, image load
and save, calibration, correlation, subpixel accuracy meas-
urements, and particle tracking.

SOPHISTICATED SOLUTIONS
The PXIPL C/C++ Function Library allows embedding image
processing and analysis into user-written applications.
Under Windows, the PXIPL DLL provides services to existing
Windows applications which support ‘‘hooks’’ into DLLs.

Under Windows, PXIPL also provides image display on the
S/VGA with integrated (non-blinking) cross-hair cursor over-
lay and integrated palette modifications. PXIPL also pro-
vides ‘‘waterfall’’ display of repeatedly captured image lines
on the S/VGA.

PXIPL assists user-written programs in applications such as
image enhancement, archival, analysis, and measurement;
event and motion study; document capture; particle analysis;
visual inspection; machine vision and quality control. Join
the scientists and engineers in medical, industrial, and
research environments who rely upon EPIX® imaging solu-
tions.

Image Processing and Analysis.

Image Graphics and Printing.

Image Morphology and Transforms.

Subpixel Accuracy Measurements.

Blob Analysis and Particle Tracking.

Image Correlation.

Image Load, Save, and Print.

For use with XCLIB, SVOBJ, or 4MOBJ.

C/C++ Library for 16 & 32 Bit DOS Programs.

DLL for 16, 32, 64 bit Windows Applications.

C/C++ Library for 32 bit & 64 bit Linux Programs.



 
 

   Image Processing and Analysis Library

Resolution Flexibility - PXIPL functions can
process images of almost any size, located
either in image board memory, PC memory, or
disk files.

PXIPL functions will process any image cap-
tured by an EPIX® imaging board using either
4MOBJ, SVOBJ, or XCLIB software. Typical
capture resolutions include 4x1, 32x32,
512x240, 752x480, 768x580, 1024x768, or
2048x2048. Monochrome pixels with a
dynamic range from 1 bit (2 grey levels) to as
large as 16 bits (216 grey levels) can be pro-
cessed. Color pixels, in either RGB, YCrCb, or
HSB color space, with a range of 1 to 16 bits
per color component, are supported. Selected
operations also support up to 32 bits per pixel.
Image sequence operations, such as sequence
average or sequence integration, support up to
223 images (8 bits per pixel).

The PXIPL functions are not restricted to pro-
cessing images which were captured by
EPIX® imaging boards. Images from any
source, residing in PC memory, can be any size
and any number of colors, limited only by avai-
lability of PC memory, and the CPU word size.1

Virtual Memory - Should PC memory be
insufficient, images may also reside in disk files.
All images, whether in an imaging board buffer,
in PC memory, or in a disk file, can be
enhanced and analyzed by the same functions!

Functional Flexibility - Typical PXIPL
functions provide a broad spectrum of opera-
tions, allowing a single function to do the work
of many functions. For example, a convolution
function accepts parameters describing the
image buffer, the area of interest within the
buffer, the convolution size N, and the NxN
kernel coefficients. This single function allows
convolving with a 3x3, 9x9, 31x31, or 99x99
kernel size, limited only by available PC
memory.

Efficiency - PXIPL functions are coded in
optimized C, with selected segments hand-
coded in assembler. Many functions internally
identify special cases, invoking code optimized
for each special case. The NxN convolution,
for example, examines the coefficients provided
and selects custom routines depending upon
the size of N, the multiplication and summation
precision needed, and whether division is
required.

Proven Performance - The same functions
provided with PXIPL also form the backbone of
the ready-to-run XCAP, 4MIP, SVIP, and XCIP
interactive image analysis programs, and have
been proven through daily use in on-line,
rigorous, imaging applications.

Image Selection Flexibility - A typical
enhancement function operates on any image
buffer, on either the full image or selected area
of interest, with the result saved to any buffer or
area of interest of the same dimensions. Image
pair operations allow independent selection of
the two source image operands and of the
image destination.

PXIPL functions for nonrectangular regions use
a common method of region specification, sup-
porting rotated elliptical, rotated rectangular,
N-sided polygon, boundary path, and scan list
specifications.

Functions can operate on any pixel color com-
ponent of a color image; selected functions can
also operate upon all color components.

struct pximage im1, im2, im3;
struct pxy xysize = {752, 480};
unsigned char buffer[752][480];
void *mallocbuf = NULL;

im1 = *pxd_defineImage(1,1, // access imaging
0,0,-1,-1,..,"Grey"); // board’s buffer 1.

pximage_memory(&im, buffer, // access existing
&xysize, PXDATUCHAR, // image in PC malloc memory,
8, 1, // size 752x480, of chars,
PXHINTGREY, 0); // 8 bits per pixel,

// one color, monochrome

pximage_memmalloc(&im3, // create & access new image
&mallocbuf,&xysize, // in PC memory, 752x480,
PXDATUCHAR, 8, // of chars, 8 bits/pixel,
1, PXHINTGREY); // one color, monochrome

pxip8_pairsub(&im1, &im2, // Subtract pixels of
&im3, 0); // image 1 from image 2,

// put result in image 3.

Operating upon imaging board buffers & images in PC memory.

struct pximage *ip1, *ip2, *ip3;
unsigned long histogram[16], cnt;

ip1 = pxd_defineImage(1,1, // access image board buffer 1,
188,120,564,360, // AOI of center 1/4 (assuming
.., "BofRGB"); // 752x480), RGB color space,

// access color #3, B of RGB.

pxip8_histab2(NULL, ip1, // compute Blue AOI histogram
histogram,16); // binned into 16 ranges.

ip2 = pxd_defineImage(1,1, // access image board buffer 1,
0,0,-1,-1,.., // full image AOI, as HSB,
"SofBSH"); // access color #2, S of HSB.

pxip8_pixthresholdcnt(NULL, // count Saturation
ip2, 42, 0,&cnt); // values >= 42

ip3 = pxd_defineImage(1,2, // access image board buffer 2,
0,0,-1,-1,.., // full image AOI, as HSB
"SofBSH"); // access color #2, S of HSB

pxip8_copy(NULL,&ip3,&ip2); // set saturation of buffer 1
// from buffer 2, leaving
// hue & brightness unchanged

Operating upon selected colors of selected color space.



 
 

   Image Processing and Analysis Library

PXIPL FUNCTIONS
Add Pixels of Image Pair
Add Pseudo-Random Noise
AND Pixels of Image Pair
AND Pixels with Mask in Region
AND Pixels with Mask
Average Image Sequence
Average Pixels of Image Pair
AVI 1.0 File, Save Image Sequence
AVI 1.0 File, Save Image Sequence
AVI 1.0 File, Save Sequence - Init
AVI 2.0 File, Save Image Sequence
AVI 2.0 File, Save Sequence - Init
AVI File, Load Image Sequence
AVI x.0 File, Save Sequence - Add Image
AVI x.0 File, Save Sequence - Done
Binary File, Save Sequence - Add Image
Binary File, Save Sequence - Done
Binary File, Save Sequence - Init
Blend Pixels of Image Pair
BMP File, Load Image
BMP File, Save Image
Calibrate Intensity/Density Mapping
Calibrate Spatial Mapping
Complement Pixel Values in Region
Complement Pixel Values
Compress Region Path
Compute Center of Mass of N’th Power of Region
Compute Center of Mass of N’th Power
Compute Center of Mass of Region
Compute Center of Mass
Compute Center of Mass, Binary Image Region
Compute Center of Mass, Binary Image
Compute Histogram on Region
Compute Histogram on Region
Compute Histogram on Region
Compute Histogram Statistics w. Interpretation
Compute Histogram Statistics w. Interpretation
Compute Histogram Statistics
Compute Histogram Statistics
Compute Histogram
Compute Moments of Region w. Interpretation
Compute Moments of Region
Compute Moments w. Interpretation
Compute Moments
Compute Radial Mass w. Interpretation
Compute Radial Mass
Compute Shape Statistics of Image Region
Compute Tabulated Histogram of Differences on Region
Compute Tabulated Histogram of Differences
Compute Tabulated Histogram
Compute Tabulated Histogram
Construct PXIMAGE: 2-D Slice of 3-D Image
Construct PXIMAGE: 3-D Representation of 2-D Image
Construct PXIMAGE: Access Freq. Domain Complex Image
Construct PXIMAGE: Access Image in File
Construct PXIMAGE: Access Image in File, Done
Construct PXIMAGE: Access Image in Host Memory
Construct PXIMAGE: Access Image in Host Memory
Construct PXIMAGE: Access Imaging Board Buffer
Construct PXIMAGE: Access Imaging Board Buffer
Construct PXIMAGE: Allocate Image in Malloc’ed Memory
Construct PXIMAGE: Allocate Image in Malloc’ed Memory
Construct PXIMAGE: Converted Color Space of Image
Construct PXIMAGE: Release Image in Malloc’ed Memory
Construct PXIMAGE: Release Image in Malloc’ed Memory
Construct PXIMAGE: Slice of Color Image
Construct PXIMAGE3: Access Image Sequence in Host Memory
Construct PXIMAGE3: Access Image Sequence in Host Memory
Construct PXIMAGE3: Access Imaging Board Buffers
Construct PXIMAGE3: Allocate Image Sequence in Malloc’ed Memory
Construct PXIMAGE3: Allocate Image Sequence in Malloc’ed Memory
Construct PXIMAGE3: Release Image Sequence in Malloc’ed Memory
Construct PXIMAGE3: Release Image Sequence in Malloc’ed Memory
Contrast Enhance By Percentile
Contrast Enhance Real Pixels
Contrast Enhance Region By Percentile
Contrast Enhance Region Real Pixels
Contrast Enhance Region
Contrast Enhance
Contrast Match Image Pair
Copy & Area Interpolation
Copy & Bilinear Interpolation w. Orientation
Copy & Convert Data Types
Copy & Exchange Image Buffers
Copy & Nearest Neighbor Interpolation w. Orientation
Copy & Skew Image Left/Right
Copy & Skew Image Up/Down
Copy & Spatial Replicate
Copy Image Buffer Region
Copy Image Buffer with Reversal
Copy Image Buffer with Shift
Copy Image Buffer
Copy Image with Rotation
Copy Image with Warping
Copy Image with Warping
Copy Slice of Image Buffer
Correct Image as per Speckle Mask
Correct Image as per Speckle Mask
Correlation Peak
Correlation Profile
Count Pixels by Threshold
Count Real Pixels by Threshold
Count Region Pixels by Threshold
Count Region Real Pixels by Threshold
De-Flicker Interlace: Line Pair Average
De-Flicker Interlace: Line Pair Duplicate
De-Flicker Interlace: Modify Singularities
Decode SMPTE Vertical Interval Time Code
Difference for Insert of Image Pair
Dither Pixels, Uniform
DOS Mouse: Get Clicks
DOS Mouse: Get Motion
DOS Mouse: Get Status
DOS Mouse: Initialize Access
DOS Mouse: Terminate Access

DOS S/VGA: Set Mode and Initialize Access
DOS S/VGA: Terminate Access
Draw 2-D Cosine Product Pattern
Draw 2-D Fiducial Pattern
Draw 2-D Gaussian Pattern
Draw 2-D Separable Patterns
Draw Alignment Pattern
Draw Arrow
Draw Box
Draw Characters
Draw Curved Line defined as Bezier Polynomial
Draw Ellipse
Draw Icon or Cursor
Draw Icon Primitive, Free Resources
Draw Icon Primitive, Initialize
Draw Icon Primitive, Modify Pixels
Draw Icon Primitive, Test Completion
Draw Line Segment
Draw Region Boundary
Draw Region Path
Draw Test Pattern
Draw Text from Font Map
Draw Text
Edge Detection, Kirsch
Edge Detection, Roberts
Edge Detection, Sobel Absolute
Edge Detection, Sobel
Edge Gradient, Thin
Ellipse Fitting Measurement
Errors: Translate Error Code to String
Exclusive OR Pixels of Image Pair
Export Region to File
Extend Region Path
Extend Region Path
FFT: Filter Frequency Domain
FFT: Get Dimensions of Freq. Domain Representation
FFT: Inverse Transform Image
FFT: Log Magnitude Plot of Freq. Domain
FFT: Scale Freq. Domain by Log Magnitude Plot
FFT: Transform Image
Field Interlaced Image Line Shuffle
Field Interlaced Image Line UnShu ffle
FIFO Average
Filter, Low Pass, Fixed
Filter, Low Pass, Low Smear
Filter, Low Pass, Weighted
Filter, Median
Filter, Median, Binary Images
Filter, Median, Weighted
Filter, Rank High (Dilate)
Filter, Rank Low (Erode)
Filter, Sharpen, Laplacian
Find Blobs and List
Find Blobs and List
Find Blobs, Analyze and List
Find Region’s Enclosed Area
Find Region’s Enclosing Window
FITS File, Load Image
FITS File, Save Image
Follow and Collect Region Boundary by Value
Free Region
Gamma Correction
Get PXIMAGE: Access Imaging Board Buffer
Get PXIMAGE: Access Imaging Board Color Buffer
Get PXIMAGE: Access Imaging Board Frame Buffer
Get PXIMAGE: Access Imaging Board Frame Buffer
Get PXIMAGE: Release Access to Imaging Board Frame Buffers
Get PXIMAGE3: Access Imaging Board Buffers
Get PXIMAGE3: Access Imaging Board Color Buffers
Get PXIMAGE3: Access Imaging Board Frame Buffers
Get PXIMAGE3: Access Imaging Board Frame Buffers
Get PXIMAGE3: Release Access to Imaging Board Frame Buffers
H-P PCL Font: Draw Line of Characters
H-P PCL Font: Load
H-P PCL Font: Obtain Character Info
H-P PCL Font: Obtain Information
H-P PCL Font: Unload
Halftone by Black/White Sum
Histogram Equalization
Image File, Obtain Information on Subfiles
Image File, Obtain Information
Image File, Release Information
Import Region from File
Initialize Region Path
Insert of Differences of Image Pair
Integrate Image Sequence
JPEG File, Load Image
JPEG File, Save Image
Left Shift Pixel Values in Region
Left Shift Pixel Values
Line Pair Pixel Shuffle
Line Pair Pixel UnShu ffle
Linux: Display Cursor via XWindows/X11
Linux: Display Image via XWindows/X11
Load Image from File, Hex ASCII
Load Image from File, Packed Binary
Load Image from File, Unpacked Binary
Load Image Sequence from File, Packed Binary
Load Image Sequence from File, Unpacked Binary
Map Pixel Values in Region
Map Pixel Values
Map Uchar Pixel Values in Region
Map Uchar Pixel Values
Map uint16 Pixel Values in Region
Map uint16 Pixel Values
Map uint32 Pixel Values in Region
Map uint32 Pixel Values
Maximum of Pixels of Image Pair
Medial Axis Thinning
Minimum of Pixels of Image Pair
Modify Region Definition: Rectangle to Polygon
Morphology Close
Morphology Dilation w. 3x3 Element
Morphology Dilation
Morphology Erosion w. 3x3 Element

Morphology Erosion
Morphology Hit-Miss
Morphology Open
MSB Extend Pixel Values in Region
MSB Extend Pixel Values
Normalize Columns’ Mean
Normalize Image as per Background Image
Normalize Lines’ Mean
NxN Convolution, Integer
NxN Convolution, Real
NxN Dynamic Threshold
NxN Inverse Contrast Ratio Mapping
Obtain Filtered pximage Access into Imaging Board Memory
Obtain Filtered pximage3 Access into Imaging Board Memory
Obtain pximage Access into Imaging Board Memory
Obtain pximage3 Access into Imaging Board Memory
Offset Pixel Values in Region
Offset Pixel Values in Region
Offset Pixel Values
Offset Pixel Values
OR Pixels of Image Pair
OR Pixels with Mask in Region
OR Pixels with Mask
Overlay Pixels of Image Pair
Overlay Pixels of Image Pair
Paint within Region
PCX File, Save Image
Perform Intensity/Density Mapping
Perform Inverse Spatial Mapping
Perform Spatial Mapping
Print Image
Product of Pixels of Image Pair
Product of Pixels of Image Pair
PXIMREGION: NonRectangular Image Region Speci fication
Ratio of Pixels of Image Pair
Ratio of Pixels of Image Pair
Recursive Average
Release Intensity/Density Mapping State
Release Spatial Mapping State
Right Shift Pixel Values in Region
Right Shift Pixel Values
S/VGA: Display Cursor
S/VGA: Display Image
S/VGA: Translate Image to Screen Coordinates
S/VGA: Translate Screen to Image Coordinates
S/VGA: Waterfall Line Display
Save Image Sequence to File, Packed Binary
Save Image Sequence to File, Unpacked Binary
Save Image to File, Hex ASCII
Save Image to File, Packed Binary
Save Image to File, Unpacked Binary
Scale Pixel Values in Region
Scale Pixel Values in Region
Scale Pixel Values
Scale Pixel Values
Scan, Connect, Collect Region by Table
Scan, Connect, Collect Region by Value
Search for Largest Pixel Value
Search for Pixel by Table
Search for Pixel by Value
Search for Smallest Pixel Value
Set Color Pixel Values in Region
Set Color Pixel Values
Set Pixel Components to Maximum in Region
Set Pixel Components to Maximum
Set Pixel Components to Median in Region
Set Pixel Components to Median
Set Pixel Components to Minimum in Region
Set Pixel Components to Minimum
Set Pixel Values in Region
Set Pixel Values
Set PXIMAGE: Set 2-D Area of Interest Window
Set PXIMAGE3: Set 3-D Area of Interest Window
Set Real Pixel Values
Shift Image One-Half Line Up or Down
Shuffle Column Order to Even-Odd Halves
Shuffle Even-Odd Halves to Column Order
Spatial Intensity Normalization
Spatial Quantization & Shrink
Subpixel Edge Measurement
Subtract Pixels of Image Pair
Swap Line or Column Pairs
Targa File, Save Image
Threshold Pixel Values in Region
Threshold Pixel Values in Region
Threshold Pixel Values in Region
Threshold Pixel Values
Threshold Pixel Values
Threshold Pixel Values
TIFF File, Load Image Sequence
TIFF File, Load Image
TIFF File, Save Image Sequence
TIFF File, Save Image
TIFF File, Save Sequence - Add Image
TIFF File, Save Sequence - Done
TIFF File, Save Sequence - Init
Tile Image Sequence
Track Particle Motion
Translate Region Definition to Path
Translate Region Definition to Scan List
User-De fined Premature Termination Functions
Windows: Create Device Independent Bitmap (DIB)
Windows: Display Cursor via GDI
Windows: Display Image via DirectDraw
Windows: Display Image via GDI
Windows: Display Image via Video for Windows
Windows: Draw Text using FONT
Windows: Release Device Independent Bitmap (DIB)
Windows: Translate Device to Image Coordinates
Windows: Translate Image to Device Coordinates
Windows: Waterfall Line Display via GDI
XOR Pixels with Mask in Region
XOR Pixels with Mask



 

   Image Processing and Analysis Library

IMAGING BOARD:
For use with XCLIB: Any PIXCI® A, CL1, CL2, CL3SD, D,
D24, D32, D2X, D3X, E1, E1DB, E4, E4DB, EB1,
EB1-PoCL, EC1, ECB1, ECB1-34, EL1, EL1DB, SI, SI1, SI4
SV2, SV3, SV4, SV5, SV5A, or SV5B imaging board. Any
PIXCI® imaging board with an EPIX® SILICON VIDEO®
camera.
For use with 4MOBJ: Any 4MEG VIDEOTM Model 5, Model
10, or Model 12, imaging board. Also supports the IMAGE
MEMORY EXPANSION and the COC40 series2 for use with
the Model 12.
For use with SVOBJ: Any SILICON VIDEO® MUXTM imag-
ing board.

ENVIRONMENT:
Standard versions support:

Microsoft C/C++ V7.0, V8.0 (Visual C/C++ V1/V2) 16 bit in
M or L models. For DOS V3.0 or later, 8088 or better.

Borland C/C++ V4.0, V5.0 16 bit in M or L models. For
DOS V3.0 or later, 8088 or better.

Watcom C/C++ V11.0 32 bit in F model. For Tenberry
(Rational) DOS extender, 80386 or better.

Windows 3.x 16 bit DLLs, for any compiler or Windows
application. For Windows V3.x, Standard or Enhanced
mode, 80286 or better.

Windows 95, 98, ME 32 bit DLLs, for any compiler or Win-
dows application.

Windows NT, 2000, XP, Vista 32 bit DLLs, for any compiler
or Windows application.

Windows XP(x64), Vista(x64) 64 bit DLLs, for any compiler
or Windows application.

Linux V2.4.8 or later kernel on Intel 80x86.

Linux V2.6 or later kernel on Intel x86-64.
Other environments available on request.
Memory requirements: Approximately 16 to 1024 Kbytes,
dependent upon selection of library routines.
PXIPL is optionally provided with, and must be used with,
the 4MOBJ, SVOBJ, XCLIB version with which it is pack-
aged. PXIPL routines require the presence of a supported
imaging board.

LICENSING:
Licensing permits royalty free inclusion of library routines
into programs using the 4MEG VIDEOTM, the SILICON
VIDEO® MUXTM, or the PIXCI® imaging boards.

SOFTWARE INCLUDES:
As required by chosen environment: Object code libraries
(.lib), Dynamic Link Library (.dll), and/or Object code archive
(.a).
C prototype files (.h).
Printed manual(s).

1. In 16 bit programming environments: the product of the number of
pixels per line and color components per pixel may not exceed 32767,
the number of lines may not exceed 32767. In 16 and 32 programming
environments: the size of an image and image sequence may not
exceed 232-1 bytes. In 64 programming environments: the size of an
image may not exceed 232-1 bytes, the size of an image sequence may
not exceed 264-1 bytes.

2. PXIPL for the COC40 supports Native and Bound routines for the
TMS320C40, as well as PC routines. A detailed description is provided
in the PXIPL-COC40 brochure.

The Waterfall Display feature requires digitization and field counts, and
is intended only for use with imaging board buffers. Specifications sub-
ject to change without notice.

EPIX® imaging products are made in the USA.

EPIX, 4MEG VIDEO, COC40, SILICON VIDEO, SILICON VIDEO
MUX, PIXCI, QUICK SET VIDEO, 4MOBJ, SVOBJ, XCLIB, XCOBJ,
and PXIPL are trademarks or registered trademarks of EPIX, Inc.
Other brand, product, and company names are trademarks or registered
trademarks of their respective owners.

Copyright © 2009 EPIX, Inc. All rights reserved. 26-May-2009.

int kernel[15][15], i, j; // Define 15x15 kernel as low pass
for (i = 15; i--; ) // filter with all coefficients 1.

for (j = 15; j--; )
kernel[i][j] = 1;

pxip8_NxNconvolve( // Do 15x15 convolution on 100x100
pxd_defineImage(1,1,0,0,100,100,..,"Grey"),

// AOI of buffer 1, result into
pxd_defineImage(1,2,0,0,100,100,..,"Grey"),
15, kernel, 0, 0, 0); // buffer 2.

Performing 15x15 convolution on AOI.

struct pxywindow bounds;
struct pxip8blob blob[100]; // results
struct pxy search = {-1, 0}; // init search coordinates
int n, i;
bounds.nw.x = 3; // min blob width
bounds.nw.y = 3; // min blob height
bounds.se.x = 100; // max blob width
bounds.se.y = 100; // max blob height
n = pxip8_bloblist(NULL, // search image buffer 5

pxd_defineImage(1,5,0,0,-1,-1,..,"Grey"),
&search, ’g’ˆ’t’, 123, 0, // for up to 10 blobs
&bounds,0,NULL,100,blob,NULL); // identified by pixel

// values >= 123

printf("Blobs found: %d\n", n);
for (i = 0; i < n; i++) // report blobs

printf("Blob: %d, Center of Mass: (%g,%g), Area: %ld\n",
i, blob[i].ucom.xd, blob[i].ucom.yd, blob[i].xyarea);

Searching for blobs.

struct pxio8tiffparm tiffparm;
memset(&tiffparm, 0, sizeof tiffparm);
tiffparm.bits = 8; // set number of bits to be saved
tiffparm.description = "Test Run #4"; // and a short description.

for (int i = 0; i < 100; i++) // save sequence of 100 buffers
pxio8_tiffwrite(NULL,

pxd_defineImage(1,i+1,0,0,-1,-1,..,"Default"),
"RUN4.TIF", i, // from image buffer i & full AOI
NULL, &tiffparm, 0); // to file name & subimage number

Saving image sequence to single TIFF file.

double mass, xcenter, ycenter;
pxip8_masscenter(NULL, // use AOI of buffer 3

pxd_defineImage(1,3,0,0,100,100,..,"Grey"),
&mass, &xcenter, &ycenter); // returned results

printf("Mass Center @ (%g,%g)\n",
xcenter, ycenter); // report results

Computing Center of Mass of AOI.


